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1. Symmetries



The CP symmetry and its violation is the key in the
development of modern particle theory. In 1976, when
the third quark family was not discovered, Weinberg
iIntroduced a multi-Higgs doublets to have a weak CP
violation:
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The CP symmetry and its violation is the key in the
development of modern particle theory. In 1976, when
the third quark family was not discovered, Weinberg
iIntroduced a multi-Higgs doublets to have a weak CP

V|O|at|0n Viv = _% ZI m%qﬁ}gﬁl 4 i ZIJ [aIJQS}gbIng]ng + b[JQb}QbJQﬁTJCZﬁI

+CIJ¢}¢J¢}¢J] + H.c.,

With the refection symmetry and three Higgs doublets,
CP violation can be introduced with the ¢, terms.
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On the strong interaction side in modern gauge theory,
there has been the QCD development after the
discovery of instanton solution: strong CP

® There exists the QCD theta vacuum, which gives an

effective interaction 0 -
Ga Gam/
322 M

® The U(1) problem and its solution by the theta term.
[Weinberg (1975), 't Hooft (Phys. Report 193806)]

near 1 GeV from

M < 3m : : ~
T = v3ms contribution from < G, G*#¥'>



The strong CP problem

The theta term breaks CP symmetry and one expects
that the NEDM is of order nucleon size times e. But,

the upper bound is O(10-2%)e cm, some 10 orders of
magnitude away from anticipation. This is the strong
CP problem. In the literature, three types were tried

(1) Massless up quark: up-quark is not massless.
(2) Calculable solutions: Nelson-Barr type.

(3) Axion solutions.



If we consider a few terms,
there can be global symm.
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If we consider a few terms,
there can be global symm.
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Viv = —2 52, m20 o + 150, larsdtordl o + briodtdsoher

+ersdyd 00 + He.,

Not to have FCNC problem, one H doublet couples to
u-type quarks and another H doublet couples to d-type

quarks. With these Yukawa couplings, a general V\y,

with the reflection symmetry (\phi, to -\phi;) breaks CP.
But, if we keep all terms except the C|j terms, there

appear a global symmetry: Peccei-Quinn symmetry.



But, with the quark global symmetry beyond the SM, in
our case two, one must be a global symmetry. With this

global symmetry of quark fields the phase appears in the
theta term

0 — 20 -
e Gapv
3272 MY

Weinberg-Wilczek has shown that this phase field
originally present in the Lagrangian develops a potential,
and it Is not an exact Goldstone boson but a pseudo-
Goldstone boson. Phenomenologically, the PQWW
axion Is ruled out.
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But, with the quark global symmetry beyond the SM, in
our case two, one must be a global symmetry. With this
global symmetry of quark fields the phase appears in the

theta term )
0 — 200 ~
a a LV - = = =
3272 G /| ........

Weinberg-Wilczek has shown that this phase field
originally present in the Lagrangian develops a potential,
and it Is not an exact Goldstone boson but a pseudo-
Goldstone boson. Phenomenologically, the PQWW
axion Is ruled out.







Axion solution has two important parameters

fq =Intermediate scale, DW number.



2. “Invisible” axions
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From the exact
global symmetry.

This anomal
breaks the PQ
symmetry.
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From the exact
global symmetry.

This anomaly
breaks the PQ
symmetry.
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VEV of scalar phi
gives
the f, scale.
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1/2
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s “intermediate scale” f, ~(veWI\/IP‘)”2 ?
This Is possible only after having a
spontaneously broken global
symmetry far below the Planck mass
scale. We will come back to this point
|ater.
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Scale of 15
DFSZ axion



Scale of f; :
DFSZ axion

Renormalizable terms with fine-tuning:
V for DFSZ axion, HyHo S2, S|

Non-renormalizable terms with SUSY: no fine-tuning
W for DFSZ axion, H{Hy S2



Domain-wall
problem

Vilenkin-Everett (1982);
Barr-Choi-Kim (1987) c

Sikivie (1982



N DW=1 needed

Top-down approach, using string compactification

. The global U(1) is broken at the axion window.
DW number given here.

By giving a VEV to Qp=1 field, we obtain NDW=1.

Example: 1 heavy quark model. But, effectively, all PQ

charged quarks should add up their contributions to

makeN =1.
DW

. Anomalous U(1) gauge symmetry.

. Choi-Kim mechanism: with hidden sector force. Anomalous
U(1) becomes global U(1) below the GUT scale.

~ W=

O Ol



N DW=1 needed

Top-down approach, using string compactification

. The global U(1) is broken at the axion window.
DW number given here.

By giving a VEV to Qp=1 field, we obtain NDW=1.

Example: 1 heavy quark model. But, effectively, all PQ

charged quarks should add up their contributions to

makeN =1.
DW

. Anomalous U(1) gauge symmetry.
. Choi-Kim mechanism: with hidden sector force. Anomalous

U(1) becomes global U(1) beloy the GUT scale.

Better way than Lazarides-Shafi: we need a
Goldstone boson direction

~ W=

O Ol






For the center of GUT group, Lazarides-Shafi (1982).
But, the following ideas are more widely applicable.
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Choi-Kim, PRL55 (1985) 2637 | with two confining forces

Torus identification
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Choi-Kim, PRL55 (1985) 2637 | with two confining forces




Choi-Kim, PRL55 (1985) 2637 | with two confining forces

The same vacuum



Goldstone boson direction

T
The same vacuum




Goldstone boson direction

NN

The same vacuum

o=




3. 't Hooft mechanism
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't fl—[ocﬁ mechanism:

‘Jf a gauge symmetry and a g[oﬁa[ symmetry are broken By
one comjo[ex scalar By the BEHGHK mechanism, then the gauge

Symmetry 1S 61’0@61@ cmo{ A g[OBCI[ Symmetry remains LLTLETOQQTL.
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't ’J—[ocﬁ mechanism:

le a gauge symmetry and a gfoﬁa[ symmetry are broken By
one comjo[ex scalar By the BEHGHXK mechanism, then the gauge
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| 1 Unbroken X=Qgopa-Qgauge
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¢ — eia(x)anugeeiﬁleobal¢

the a direction becomes the longitudinal mode of heavy gauge boson. The above transformation can be rewritten as

¢ — ei(a(m)‘l'ﬁ)Qg&uge eiﬁ(leobal —Qgauge ) ¢

Redefining the local direction as a'(x) = a(z) + 3, we obtain the transformation

¢ — eia’(x)anuge eiﬁ(leobal—anuge)qs.
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the a direction becomes the longitudinal mode of heavy gauge boson. The above transformation can be rewritten as

¢ — ei(a(x)*l'ﬁ)anuge eiﬂ(leobal —Qgauge) ¢

Redefining the local direction as a'(x) = a(z) + 3, we obtain the transformation
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d) — eia(x)anuge eiﬁleobal¢

the a direction becomes the longitudinal mode of heavy gauge boson. The above transformation can be rewritten as

¢ — ei(a(m)‘Fﬁ)ngge eiﬁ(leobaI —anuge)¢

Redefining the local direction as a'(z) = a(x) + 3, we obtain the transformation

¢ — eia’(x)anuge eiﬁ(leobal—anuge)¢.
1 2

. g
1Dué|* = |0y — 19QaAu) om0 = 5(6;1%)2 —9QaAu0"ay + ngvai
92 2 92 1 2
= A o

SO0, the gauge boson becomes heavy and
there remains the x-independent
transformation parameter beta. The
corresponding charge is a combination:

X:leobal'anuge



1his process can be worked out at any step. When one
global symmetry survives below a high energy scale, we
consider another gauged U(1) and one more complex
scalar to break two U(1)'s. Then, one global symmetry
SUrvives.



a; [= the phase of ¢; (= (V7 + p1)e*®*/V1)/4/2] are considered and only one Goldstone boson

\/]\/II%II + €2V 2 (cos O ayp — sinfg aq)
e tan 0 = eVi /M. The orthogonal Goldestone boson direction

a = cosOq a1 + sinfc an

a global direction below the scale \/ Mﬁn 1 e2 VlZ



a; [= the phase of ¢; (= (V7 + p1)e*®*/V1)/4/2] are considered and only one Goldstone boson

\/]\11%11 + €2V 2 (cos O ayp — sinfg aq)
e tan 0 = eVi /M. The orthogonal Goldestone boson direction

a' = cosBg a1 + sin Oa anm

a global direction below the scale /M2, + €2V}

This process can be worked out further below the GUT
scale as far as U(1) gauge symmetries (to be broken
above the EW scale) are present. Then, one global
symmetry survives down to the intermediate scale.






Mp One complex scalar for one gauge
symmetry breaking




Mp One complex scalar for one gauge
symmetry breaking

VauT

Until all wanted U(1) gauge
symmetries are broken.




Mp One complex scalar for one gauge
symmetry breaking

VauT

Until all wanted U(1) gauge
symmetries are broken.

v At the next step, a global
| symmetry is broken




4. Axion-photon-photon coupling

O Tr (Qem)”
7Y = i (Ts)2

One generator
on quark
fields, e.g. Tq
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4. Axion-photon-photon coupling

O Tr (Qem)”
7Y = T (Ts)2

!

One generator
on quark
fields, e.g. Tq
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If the quark representation is fundamental and only
the SM quarks have PQ charges, then

Tr [T [“=(1/2)x(number of chiral quarks). So,

O _ It (Qem)2 B 1
Y Tr(T3)? sin? 6y
Caryy = CW’Y —(Contribution from QCD

chiral symmetry breaking)
We use 2 from m, / mgq = 1/2
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Phys. Rev. D55,
non-SUSY (d¢, e) 055006(1998)

non-SUSY (u€,e) H

u

GUTs
SUSY

Ref. |[25] Approximate | hep-ph/0612107
Ref. |26, 27] Anom. U(1) | 1405.6175; 1603.02145

my/ mq=1/2



Phys. Rev. D55,
non—SUSY (d°, e) 055006(1998)

non-SUSY (u° ,e)

Approximate | hep-ph/0612107
Anom. U(1) [ 1405.6175; 1603.02145

my/ mq=1/2



Phys. Rev. D55,
non—SUSY (d°, e) 055006(1998)

non-SUSY (u° ,e)

These numbers

Approximate gg &Zgg 1”5%/1 07
Ref. [26, 27| | Anom. U(1) | {Hifi€afiondiie2145

but It IS not SoO.

my/ mq=1/2



In general, many quarks have PQ charges, and the
tables on KSVZ and DFSZ do not make sense except
In the experimental proposal for grants application.
Further more vector like particles (must be of the
KSVZ type) removed at the intermediate scale can
contribute. Some ultraviolet completed theory is really
prediction on the axion-photon-photon coupling.

One has to know all spectra with PQ, color, and EW
charges.
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1703.05345 and 1603.02145

Tablel The SU(S5)xU(1)x states. Here, + represents helicity +% and chiral, counts quark and antiquark in the same way. The right-handed
— represents helicity _%_ Sum of Qanom is multiplied by the index of states in 73 and 75 are converted to the left-handed ones of 79 and 77,

the fundamental representation of SU(3),, 5. The PQ symmetry, being respectively. The bold entries are Qanom/126

Sect. Colored states SUB)y Mult. 07 0O 03 0Os Os 0O Oaunom Label Q}”
U (+++——;——+)(©% 10_, -6 -6 +6 0 0 0 —1638(—=13) C;  —3276
U (+—-—-——;+--)©% 543 +6 -6 —6 0 0 0 —126(-1) C;  —29%4
T} (+—— — —; == =) 08y 543 2 -2 -2 -2 0 0 0 —378(-3) 2C3 —882
T} (++— —; = )08 10, 2 -2 -2 -2 0 0 0 —378-=3) 2Cy -—756
T,  (10000; %% 3) (0% 5.5 2 +4 +4 44 0 0 0  +756(+6) 2Cs  +1008
7}  (=10000; % 3 3) (0% 552 2 +4 +4 +4 0 0 0  +4756(+6) 2C¢  +1008
)  (10000;000) (0% =+ L 0Y 5.5 3 o o0 0 -120 0 O 3C; 0
T  (=10000;000)(0°; L 5L 0) 5.2 3 0 0 0 +12 0 0 0 3Cg 0
7 (=10000; 2 2L =) ©% F £ £2)Y 5. 1 -2 -2 -2 0 49 +3 -972(-%) Co  —129
Ty (+10000; = 2 L) ©%5 F F ) 5., 1 -2 -2 -2 0 49 43 -972(-%) Cio —129
9 (+++——3;000)0%F F &)Y 10, 1 0o 0 0 0 +9 +3 —594(-3) C;p —1188
Ty (++———;000)©0% FH £ 22y 10, 1 o 0 0 0 =9 -3 4594+ Cpp +1188
—16 —28 48 0  +18 +6 —3492 —5406
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Two families from
T4 and one family
from U
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The unification value



5. Model-independent axion
In string theory
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Openning of string theory by the GS term

Counter term is introduced to cancel the anomalies: EgxEg’
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Openning of string theory by the GS term

Counter term is introduced to cancel the anomalies: EgxEg’

(1;1"213'2)2 — tr  F? trgFQ] + .- }

C
S! = 308 |(tr{ F?%)?
1 108000/ (308 [(tr1 F7)

One needs a term (GS-term) to cancel the gauge and gravitational
anomalies.
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Anomalies: even dimensions



Anomalies: even dimensions

AH

\
) "

In 10D, the hexagon anomaly. It is cancelled by the
previous GS term.
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Green-Schwarz mechanism:

The gravity anomaly in 10D requires 496 spin-1/2 fields.

Possible non-Abelian gauge groups are rank 16 groups SO(32) and
ESXE8’. The anti-symmetric field B,,\, has field strength (in diff

notation), H= dB+wa\Y-w4 0:S0O(32). Three indices matched.
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Possible non-Abelian gauge groups are rank 16 groups SO(32) and
ESXE8’. The anti-symmetric field B,,\, has field strength (in diff

notation), H= dB+wa\Y-w4 0:S0O(32). Three indices matched.

K2

2g% ¢

sHynpHY Y, with M,N,P ={1,2,--- ,10}
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Hynp IS the field strength of By, : This is called the Ml-axion.
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Hynp IS the field strength of By, : This is called the Ml-axion.

H = dB + wgy — w3y

1 1

1 1
H =db | gowglﬂ | 30ng2 - ng

3
dwgy —_ ter
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Hynp IS the field strength of By, : This is called the Ml-axion.

H:dB—I—ng—ng

1 1
H=db 30‘*’31/1 | 3Ong2 — wip

1 1

3
dwgy —_ ter

The dual of H is the so-called Ml-axion [Witten (1984)]

| o
Huvp = M €Cuvpo 07 amr
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Hynp IS the field strength of By, : This is called the Ml-axion.

H:dB—I—ng—ng

1 1
H = dB - 3Ong1 | 30“’:(3)1/2 — ws

1 1
H=dB | 3Owgy1 | 30(0:(3)]/2 — ng

dwgy — tI‘F2

A3)

3

The dual of H is the so-called Ml-axion [Witten (1984)]

o
Hp,vp = M €Cuvpo 07 amr
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In the orbifold compactification, e.g. at a Z_3 torus, there are 3

fixed points. Here, we interpret that the flux is located at the fixed
points. We take the limit of string loop almost sitting at the fixed

points.
It involves 2nd rank antisymmetric field ByN-
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points. We take the limit of string loop almost sitting at the fixed

points.
It involves 2nd rank antisymmetric field ByN-

Vpo _1jktmn 1 1 o
H,upAs M po gkl <Fz]><Fkl><an> _|_} N 3!6,wng“ P A

IS ¢
1 X~ 70800
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fixed points. Here, we interpret that the flux is located at the fixed
points. We take the limit of string loop almost sitting at the fixed

points.
It involves 2nd rank antisymmetric field ByN-

. 1
prpAa eﬂvpaezjklmn<Fz,j><Fkl>(an> 4. } y 3 fuupon’pAa

/ C
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y 1
HquAa €Nupaewklmn (Fij><Fkl><an> + ... } 3 2] G“VWH“VPAG

C
Sl
1% 770800 \

1
2. 31M2,,

H,,,H"?, with p,v,p={1,2,3,4}.



A,u. A/L A’“'
(F56)
g Hupo “““ ®-----
(F7s)
(Fgl.10>
() (b)
1
MM]AuaﬂaM] §M]%/[IA;LAM
1 1
§M]%/II (A - M 8uaMI)2
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One may look this in the following way.

The10 supergravity quantum field theory with SO(32) and ESXES8’
gauge groups has gauge and gravity anomalies. Let us believe that
string theory Is consistent, effectively removing all divergences, i.e.
removing all anomalies. The point particle limit of 10D string theory
should not allow any anomalies. There must be some term in the
string theory removing all these anomalies. It is the GS term. In
strong Int., breaking chiral symmetry, viz. the Wess-Zumino term
removing anomalies by some term involving pseudoscalar fields.

For the GS term, already there is the field B, needed for the
anomaly cancellation. Do not need strong int.



One may look this in the following way.

The10 supergravity quantum field theory with SO(32) and ESXES8’
gauge groups has gauge and gravity anomalies. Let us believe that
string theory Is consistent, effectively removing all divergences, i.e.
removing all anomalies. The point particle limit of 10D string theory
should not allow any anomalies. There must be some term in the
string theory removing all these anomalies. It is the GS term. In
strong Int., breaking chiral symmetry, viz. the Wess-Zumino term
removing anomalies by some term involving pseudoscalar fields.

For the GS term, already there is the field B, needed for the
anomaly cancellation. Do not need strong int.

Thus, since the Ml axion is a real spin-0
particle, f; can be related to the string scale.



1.  Witten (85) showed that MI-axion has NDW=1.

2. Choil-Kim mechanism
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2. Choi-Kim mechanism
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1.  Witten (85) showed that Ml-axion has NDW=1.

2. Chol-Kim mechanism

3. Relation of prime numbers: For No=17

(a) B 4. In the example of 1710.08454, based on
the model of Huh-Kim-Kyae, sum of U(1)-

SU(3)c2 anomaly is 3492=22x32x97. So,

there Is a great chance that
M fphi At ot seale OF 34911 3493, 3497,

3499 etc will lead to NDW:1 because they

are relatively prime. Thus, the global
symmetry is determined purely from the
VEVs at the string scale.
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Thus “invisible” axion from anomalous
UJ(1) satisfies the requirements
for the intermediate 3.
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6. Approximate global
symmetry
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Except the

anomalous 10-33 [eV]
U(1), any global
symmetry does 107% [eV]
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string theory. 10-4 [eV]
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