Any Light Particle Search II (ALPS II)

Searching for Axion-like Particles with Optical Cavities

Aaron Spector International workshop on Axion physics and dark matter cosmology

Osaka University, Japan December 20-21, 2017

HELMHOLTZ

Three questions:

• How can optical cavities help us search for Axion-like particles?

• What challenges exist when using optical cavities?

• Where do we currently stand in addressing these challenges?

- Solution to the strong CP problem
 - Axion cancels terms that break CP symmetry in QCD Lagrangian

Coupling between Axions and photons

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma} a \vec{E} \cdot \vec{B}$$

- Axion would explain various astrophysical phenomena
 - Stellar cooling excesses
 - TeV transparency

Axion-like particles

Experimental Axion Searches

- Haloscopes: ADMX
 - Axions in DM halo
 - Microwave cavities with B-fields

- Helioscopes: CAST, IAXO
 - Axions generated by the sun
 - Light tight X-ray telescopes in B-fields
- Light-shining-through-a-wall (LSW): ALPS I, ALPS II
 - Creating Axion-like-particles in lab with lasers and B-fields

LSW Experimental Concept

- Axion-like-particles generated by high power laser source in B-field
 - Propagates though region of strong B-field toward wall
- Axions-like-particles reconverted to photons behind wall
 - Region of strong B-field behind the wall
 - Light tight enclosure prevents light from entering regeneration area
 - Regenerated photons measured with a single photon detector

ALPS II Concept

- Production cavity increases circulating power before wall
 - Increases the flux of axion-like-particles through the wall
- Regeneration cavity resonantly enhances probability of $a \rightarrow Y$
 - Amplifies the electromagnetic component of the Axion-like field
- Number of regenerated photons:

$$N_{\rm s} = \eta^2 N_{\rm PC} \frac{\mathcal{F}_{\rm RC}}{\pi} \frac{1}{16} \left(g_{\alpha\gamma} BL\right)^4$$

ALPS II Design Parameters

- Magnets: 5.3 T superconducting HERA dipoles, 10 per cavity
 - 468 Tm magnetic field length per cavity
- Production cavity: 100 m, 30 W input laser, 5000 power build up
 - 150 kW circulating power in the PC
- Regeneration cavity: 100m, 120,000 finesse
 - Current state of the art of mirrors for ~100 m cavities

- ALPSII factor ~3000 more sensitive than ALPSI
 - Factor of 14 from the RC, 21 from BL, 3.5 from PC power

$$N_{\rm S} = \eta^2 N_{\rm PC} \frac{\mathcal{F}_{\rm RC}}{\pi} \frac{1}{16} \left(g_{\alpha\gamma} BL\right)^4$$

ALPS II Sensitivity

Aaron Spector | International Workshop on "Axion Physics and Dark Matter Cosmology" | Osaka, Japan | December 20-21, 2017 | Page 8

ALPS II Sensitivity

Experimental Challenges

- Regeneration cavity introduces several challenges
 - Dual resonance
 - PC circulating field must be resonant with RC
 - Light Tightness
 - Can't use IR light to maintain length stability
 - Spatial overlap
 - PC and RC spatial Eigenmodes must overlap

ALPSIIa Pathfinder Experiment

- Test optical systems for ALPSIIc
- 10m collinear cavities, no magnets
- Sensitive to Hidden Photons
- Full optics demonstration summer 2018

- Production Cavity:
 - 35 W input power, power build factor of 4000 (low power operation)
 - PDH frequency stabilization, auto-alignment
 - 50 kW stable high power operation (requirement: 150 kW)
- Regeneration Cavity
 - Measured finesse of 93,000 (requirement: 120,000)
 - Implemented length control system

Aaron D. Spector, 1,* Jan H. Põld, 2 Robin Bähre, 3,4 Axel Lindner, 2 and Benno Willke 3,4

Demonstration of the length stability requirements for ALPS II with a high finesse 10 m cavity

Jan H. Põld,^{1,*} and Aaron D. Spector¹ ¹Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany

Dual Resonance Concept

PC resonance condition maintained with PDH frequency control loop

Dual Resonance Concept

- PC resonance condition maintained with PDH frequency control loop
- RC length must be resonant with PC circulating field
 - RC RMS frequency noise must be < 10% RC IR line-width
 - RC RMS length noise must be < 0.5 pm (ALPS IIc)
- Light tightness: Frequency double 1064 nm to 532 nm (green)
 - RC must be stabilized to < 1/10,000 of a line-width for 532 nm

Dual Resonance Concept

- PC resonance condition maintained with PDH frequency control loop
- RC length must be resonant with PC circulating field
 - RC RMS frequency noise must be < 10% RC IR line-width
 - RC RMS length noise must be < 0.5 pm (ALPS IIc)
- Light tightness: Frequency double 1064 nm to 532 nm (green)
 - RC must be stabilized to < 1/10,000 of a line-width for 532 nm

Dual Resonance Status

- Length actuator developed
 - Custom mount with Piezo
 - Suppressed in-loop length noise to < 0.3 pm
 - Next step: out-of-loop measurements
- Effective point of reflection changes
 - Must be suppressed < 0.5 pm
 - Measured 0.4 nm changes in 1 hour

Spatial Overlap

- RC must maintain 95% spatial overlap with the PC
 - Cavity mirror alignment requirement: 5 μrad (ALPS IIc)
 - Central breadboard used to maintain alignment
 - Measured < 1 µrad drift in 1 week
 - Active alignment of end mirrors

	Requirement	Status		
PC circulating power	150 kW	50 kW		
RC finesse	120,000	93,800		
Spatial overlap	> 95%	Breadboard mirror alignment meets requirements		
RC length stabilization	< 0.5 pm	< 0.3 pm		

- Two independent detection schemes
 - Transition Edge Sensor (TES)
 - Microcalorimeter measures temperature change induced by photon on absorber
 - Dilution refrigerator purchased from BlueFors (April delivery)
 - Heterodyne detection scheme
 - Regenerated photons coherent with PC circulating field
 - Coherent summation of measurement signal over time
 - Incoherent summation of noise

Future Challenges and Timeline

- Demonstration of dual resonance
 - Operate both cavities simultaneously, mitigate EPR changes
- Demonstration of spatial overlap
- Light tightness
- Detector development

- Timeline
 - ALPS IIa full optics concept demonstration summer 2018
 - ALPS IIc optics commissioning beginning fall 2018
 - ALPS IIc data runs in 2020

Thanks for listening!

> Any questions

Production Cavity Status

- Requirements: 150 kW of circulating power
 - 30 W input power
 - Design power build 5000
 - Automatic alignment system

- Measured power build up 4000 at 0.5 W
 - Losses of 115+-35 ppm (power build up factor without losses 4500)
- High Power operation with 30 W input power

 - 50 kW stable operation

Regeneration Cavity Status

- Measured finesse of 93,000 (design for 120,000)
 - 39 ppm losses (23 ppm design)

RC Length Stabilization results

Effective Point of Reflection Measurement

- Measured EPR changes
 - Simultaneously locked 532 nm and 1064 nm to RC
 - Measured relative drift of resonant frequencies
 - 11 kHz RMS over ~1 hour (0.4nm)

Heterodyne Detection

- Interference beat note between measurement signal and local oscillator
 - Phase relation between measurement signal and LO fixed
 - Coherently sum by demodulating at signal frequency
- Demonstrated 2 week data run with no spurious signals from ADC
- PC-RC distance fixed by ULE plate
 - Lasers in phase lock loop

Heterodyne Detection

- Interference beat note between measurement signal and local oscillator
 - Phase relation between measurement signal and LO fixed
 - Coherently sum by demodulating $S = |E_{SO}e^{i(\omega_1 t + \phi)} + E_{LO}e^{i\omega_2 t}|^2$
 - SNR = square root of N_s = $E_{LO}^2 + 2E_{LO}E_{SO}\cos(\Omega t + \phi)$
 - Demonstrated 2 week data run with no spurious signals from ADC

$$\frac{S_{\Sigma}}{\sigma_{\Sigma}} = \sqrt{N_S}$$

$$S_{I} = 2\sqrt{N_{LO}N_{S}} \sin\phi$$

$$S_{\Sigma} = \sqrt{S_{I}^{2} + S_{Q}^{2}} = 2\sqrt{N_{LO}N_{S}}$$

 $S_{L} = 2\sqrt{N_{LO}N_{g}}\cos\phi$

 $\sigma_{\Sigma} = \sqrt{\sigma_I^2 + \sigma_O^2} = 2\sqrt{N_{LO}}$

Effective Point of Reflection Changes

- RC mirrors will have different EPR for 532 nm and 1064 nm
 - EPR changes also subject to < 0.5 pm requirements
 - Layer thickness of coating stacks: CTE
 - Index of refraction of layers: dn/dT
 - Measured drift of resonant frequencies
 - 0.4nm RMS over ~1 hour

Spatial Overlap

- RC must maintain 95% spatial overlap with the PC
 - Cavity mirror alignment requirement: 5 urad (ALPS IIc)
 - Monolithic aluminum breadboard used to maintain alignment

- Measured alignment drift of PC RC mirrors on aluminum breadboard
 - RMS < 1 urad</p>
- Aligned RC with PC transmitted beam as alignment reference
 - Frequency stabilized PC
 - Observed flashes of fundamental mode in transmission of the RC

Optical Layout Table 1

Magnets

Using HERA dipole magnets

- 5.3 T superconducting magnets
- 600 m radius of curvature
 - Unbend cold mass
 - 4 have been unbent
 - Successfully operated
- 48 mm free aperture (need 40 mm)

ALPS II Sensitivity to Hidden Sector Photons

Long baseline optical resonators

Long baseline optical resonators

Parameter	Scaling	ALPS-I	ALPS-IIc	Sens. gain
Effective laser power <i>P</i> _{laser}	$g_{a\gamma} \propto P_{\text{laser}}^{-1/4}$	1 kW	150 kW	3.5
Rel. photon number flux n_{γ}	$g_{a\gamma} \propto n_{\gamma}^{-1/4}$	1 (532 nm)	2 (1064 nm)	1.2
Power built up in RC P _{RC}	$g_{a\gamma} \propto P_{reg}^{-1/4}$	1	40,000	14
<i>BL</i> (before& after the wall)	$g_{a\gamma} \propto (BL)^{-1}$	22 Tm	468 Tm	21
Detector efficiency QE	$g_{a\gamma} \propto Q E^{-1/4}$	0.9	0.75	0.96
Detector noise DC	$g_{a\gamma} \propto DC^{1/8}$	$0.0018 \mathrm{s}^{-1}$	$0.000001 \mathrm{s}^{-1}$	2.6
Combined improvements				3082

ALPS II Optical Layout

Detection Schemes

Heterodyne Detection

- Interference beat note between measurement signal and local oscillator
 - Phase relation between measurement signal and LO fixed
 - Coherently sum by demodulating $S = |E_{SO}e^{i(\omega_1 t + \phi)} + E_{LO}e^{i\omega_2 t}|^2$
 - SNR = square root of N_S

$$= E_{LO}^2 + 2E_{LO}E_{SO}\cos(\Omega t + \phi)$$

• Demonstrated 2 week data run with no spurious signals from ADC

Stellar energy loss excess

- WDs, RGs, and HB systematically cool more efficiently than expected
 - Axion or ALP coupling to photons and electrons best explains excesses

TeV Transparency

Energetic photons undergo pair production

- Expected to attenuate high energy photons from extra-galactic sources
- Intergalactic space appears transparent for these photons
- Coupling to axions of ALPs could explain this

