

Cosmological imprints of string axions in plateau

Yuko Urakawa (Nagoya university, IAR)

I.Soda & Y.U.(1710.00305)

N. Kitajima, J.Soda,& Y.U.(in progress)

String axiverse

10D string theory/supergravity

+ 6D compactification Moduli fields ~ Geometrical DOFs

4D low energy EFT + <u>String axions</u> wide mass ranges → Probe of exDim Arvanitaki et al. (10)

ex. Large Volume Scenario

Predicts light mass axions

Conlon et al. (05)

Outline

Targets

i) New window in string axiverse from GWs

ii) In particular, for Axion =DM, imprints on LSS

<u>Keywords</u>

- Parametric resonance instability
- Turbulence

String axions in plateau

Scalar potential
$$V(a) = \Lambda^4 \left(1 - \cos \frac{a}{f}\right)$$

under the dilute instanton gas approximation

In string theory constructions, potential tends to be flatten out. ex. Monodromy,

Dubovski et al. (10), Nomura, Watari&Yamazaki(17)

Axions w/flatten region

Soda & Y.U.(17)

→ Parametric resonance instability

New window in cosmological axion search

Repeat: Up & Down in half period

- → Periodic ext. force (vs centrifugal force)
- → Enhancing the amplitude
 - "Parametric resonance instability"

Mathieu equation

$$\frac{d^2}{dx^2}\tilde{\varphi} + (A - 2q\cos 2x)\tilde{\varphi} = 0 \qquad \text{resonance band} \qquad A \sim n^2$$

ex. First band $\tilde{\varphi} \propto e^{\gamma x}$ $\gamma \simeq q/2$

Two enemies against PR

ex. Reheating after inflation H < m, $\varphi(t) \sim \varphi_* cos mt$

- Particle production through interaction w/SM sector
- Enhancement of inhomogeneity through self-interaction

Cosmic expansion disturbs PR

i) φ_* damps due to Hubble friction

Growth rate $\gamma \propto \varphi_*^n$ (*n*>0)

ii) Redshift away from resonance bands

Two enemies against PR

ex. Reheating after inflation H < m, $\varphi(t) \sim \varphi_* cos mt$

- Particle production through interaction w/SM sector
- Enhancement of inhomogeneity through self-interaction

shallow

 Φ^2

Cosmic expansion disturbs PR

i) φ_* damps due to Hubble friction

Growth rate $\gamma \propto \varphi_*^n$ (*n*>0)

ii) Redshift away from resonance bands

They can be overwhelmed if plateau exists!!

Setup of problem

Soda & Y.U.(17)

Given that there is a string axion (w/mass m) whose potential has a plateau region, ...

scalar potential $V(\phi) = (mf)^2 \tilde{V}(\tilde{\phi}) \qquad \tilde{\phi} \equiv \phi/f$ i) $\tilde{V}(\tilde{\phi}) \rightarrow \tilde{\phi}^2/2 \qquad \tilde{\phi} \rightarrow 0$ ii) $\tilde{V}(\phi)/\tilde{\phi}^2 \rightarrow 0 \qquad \tilde{\phi} \rightarrow \infty$

+ Z₂ symmetry

Bottom-line story

Kasuya+(03),Amin + (10, 12, 17), Zhou(13), Antusch +(17), Kawasaki+(17), ….

Exercise: a-attractor

$$V(\phi) = \frac{(m_a f)^2}{2} \frac{(\tanh \frac{\phi}{f})^2}{1 + c(\tanh \frac{\phi}{f})^2}$$

- Klein-Gordon eq. $\Box \phi V_{\phi} = 0$
- eg. Homogeneous mode
 - $\frac{d^2\tilde{\phi}}{dx^2} + \frac{3p}{x}\frac{d\tilde{\phi}}{dx} + p^2\frac{d\tilde{V}}{d\tilde{\phi}} = 0$ Dimensionless form

$$\widetilde{\phi} = \phi/f$$
 $x = m/H = mt/p$ $a \propto t^p$

(IC)
$$\widetilde{\phi}(x_i)$$
, $d\widetilde{\phi}/dx(x_i) \longrightarrow x_{osc} = O(1) - O(10^4)$

$$-m \rightarrow H_{osc} = m/x_{osc}$$

 $-f \rightarrow$ Abundance

Background evolution

 $\widetilde{\phi}_i=5$ RD

x = m/H

Onset of oscillation is not $m \sim H$, but delayed!

$$\ddot{\varphi} + 3H\dot{\varphi} + \frac{k^2}{a^2}\varphi + V_{\phi\phi}\varphi - 2V_{\phi}\Phi + \dot{\phi}\dot{\Phi} = 0$$

Φ: Bardeen potential

cos (nmt)

2 possible instabilities

i) Parametric resonance instability Non-linear potential $V_{\phi\phi} \supset \phi^n \sim (\phi^* \cos mt)^n$

ii) Tachyonic instability

Region w/ $V_{\phi\phi} < 0$

* Backreaction of ULA on Φ was neglected.

Tachyonic instability?

Time evolution of mass term

Linear perturbation

Soda & Y.U.(17)

Onset of oscillation in RD

Neglect cosmic exp. and Φ

$$\frac{d^2}{dx^2}\tilde{\varphi} + (A - 2a\cos 2x)\tilde{\varphi} = 0$$
Band width (g/A)^n
$$\tilde{\phi} = \tilde{\phi}_*$$

$$A \equiv \frac{1}{4} \left[\left(\frac{k}{m a_{osc}} \right)^2 + 1 - (2 + 3c)\tilde{\phi}_*^2 \right] \qquad q \equiv \frac{2 + 3c}{8} \tilde{\phi}_*^2$$

Mathieu equation

 $\begin{array}{ll} \mbox{Resonance band} & A\simeq n^2 \\ \mbox{First resonance band} & \tilde{\varphi}\propto e^{\gamma x} \end{array}$

GWs from PR of axion

Frequency at present

 $Z_{OSC} \sim Z^*$

Bottom-line story of Axion's excursion

Kasuya+(03),Amin + (10, 12, 17), Zhou(13), Antusch +(17), Kawasaki+(17), ….

Preliminary

Oscillon formation

Kitajima, Soda, Y.U. (in preparation)

 $a \sim a_{\ell}$

 $a \sim 20 a_0$

 $a \sim 35 a_0$

turbulence

$$a \sim 90 a_0$$

rescattering

oscillon

N_{grid}=(128)³

f~10⁻⁴M_P, c=5, ϕ i=5 $\rightarrow \Omega_{GW} \sim 10^{-15}$ in PTA band

Outline

Targets

i) New window in string axiverse from GWs

ii) In particular, for Axion =DM, imprints on LSS

<u>Keywords</u>

- Parametric resonance instability
- Turbulence

Bottom-line story of Axion's excursion

- 1. Axion slowly rolls in plateau
- 2. Onset of oscillation $H_{osc}/m < 1$
- 3. Exponential growth due to PR

if not $H_{osc}/m \ll 1$

4. PR finished due to red-shift

Yet, for DM= axion, imprints on structure formation

Resonance peak in spectrum

Imprints for axion DM

Alternative solution to small scale issues of ACDM??

ULA w/ $m \sim 10^{-22} eV$

Recall Nagamine-san's

- → Emergent pressure smooths at $k > k_J$ k_J : Jeans scale
- → Tension with small scale observations?

Irsic et al. (17), Kim et al. (17), …

Note!! Resonance scale $k_r > k_{J \propto a}^{1/4}$ Evade tension? (in progress)

Summary

Targets: Axions in plateau

i) New window in string axiverse

ii) For Axion DM, enhancement of power spectrum at the scale determined by ~ the mass scale.

Remedy for tension of ULA w/small scale observations?

in progress

Jeans scale

ULA has pressure \rightarrow Jeans scale $k_J(a) \simeq \sqrt{mH} a$

 $k > k_J$ fluctuations are smoothed out

at equal time $k_r \simeq \sqrt{x_{osc}} k_J(a_{eq})$ Relaxing the tension?