CAN AXIAL U(1) ANOMALY DISAPPEAR AT HIGH TEMPERATURE?

$$\left\langle \partial_{\mu} J_{5}^{\mu} \right\rangle = \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} \left\langle F^{\mu\nu} F^{\rho\sigma} \right\rangle \to 0?$$

HIDENORI FUKAYA (OSAKA UNIV.) FOR JLQCD COLLABORATION PRD96, NO.3, 034509(2017),

PRD93, NO.3, 034507 (2016)

DO YOU THINK AXIAL U(1) ANOMALY CAN DISAPPEAR (AT FINITE T) ?

YES

U(1)_A sym. may be at some T. NO

 $U(1)_A$ is always broken.

DO YOU THINK AXIAL U(1) ANOMALY CAN DISAPPEAR (AT FINITE T) ?

Naïve answer would be "NO!" with some reasonable reasons: Anomaly = symmetry breaking at cut-off. Anomalous Ward-Takahashi identity $\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \rangle_{fermion} = \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \langle O(x') \rangle_{fermion} + \langle \delta_{A} O(x) \rangle_{fermion} \delta(x - x')$

holds at any energy scale, and for any gluon background.

DO YOU KNOW ANY OTHER ANOMALY WHICH CAN DISAPPEAR ?

YES

NO

Why not axial U(1) (by tuning T ?)

WE ARE BIASED BY

$$\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \rangle_{fermion} - \langle \delta_{A} O(x) \rangle_{fermion} \delta(x - x')$$
$$= \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \langle O(x') \rangle_{fermion}$$

BUT THE REAL QUESTION IS

$$\left\langle \left\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \right\rangle_{fermion} - \left\langle \delta_{A} O(x) \right\rangle_{fermion} \delta(x - x') \right\rangle_{gluons} \\ = \left\langle \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \left\langle O(x') \right\rangle_{fermion} \right\rangle_{gluons} = 0???$$

MAIN MESSAGE OF THIS TALK

In high T QCD, whether

 $\left\langle \left\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \right\rangle_{fermion} - \left\langle \delta_{A} O(x) \right\rangle_{fermion} \delta(x - x') \right\rangle_{gluons}$ $= \left\langle \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \left\langle O(x') \right\rangle_{fermion} \right\rangle_{gluons} = 0???$

or not is a non-trivial question, which can only be answered by carefully integrating over gluons (by lattice QCD).

In particular, good control of chiral symmetry (or continuum limit) is essential.

CAN U(1)ANOMALY DISAPPEAR AT FINITE T? \rightarrow MANY ANSWERS.

Before 2012

Cohen 1996, 1998 (theory)Ishikawa et al2013, 2014,2013Bernard et al. 1996 (staggered)JLQCD 2013, 2016 (overlap)Chandrasekharan et al. 1998
(staggered)TWQCD 2013 (optimal DW)HotQCD 2011 (staggered)LLNL/RBC 2013 (Domain-wal
Pelisseto and Vicari 2013(theory)Ohno et al. 2011 (staggered)Bonati et al. 2014, 2016(staggered)and many othersNakayama-Ohtsuki 2015, 2013

Red: YES Blue: NO Green: Not (directly) answered but related

HotQCD 2012 (Domain-wall) After 2012 Aoki-F-Taniguchi 2012 (theory) Ishikawa et al2013, 2014,2017. (Wilson) TWQCD 2013 (optimal DW) LLNL/RBC 2013 (Domain-wall) [may be at higher T] Pelisseto and Vicari 2013(theory) Bonati et al. 2014, 2016(staggered) Nakayama-Ohtsuki 2015, 2016(CFT) Sato-Yamada 2015(theory), Kanazawa & Yamamoto 2015, 2016 (theory) Dick et al. 2015 (OV in HISQ sea) Sharma et al. 2015, 2016 (OV in DW sea) Glozman 2015, 2016 (theory) Borasnyi et al. 2015 (staggered & OV) Brandt et al. 2016 (Wilson) Ejiri et al. 2016 (Wilson) Azcoiti 2016,2017(theory) Gomez-Nicola & Ruiz de Elvira 2017 (theory)

CONTENTS

- 1. Is $U(1)_A$ symmetry theoretically possible ?
- 2. Lattice QCD at high T with chiral fermions
- 3. Result 1: $U(1)_A$ anomaly
- 4. Result 2: topological susceptibility
- 5. Summary

$U(1)_A$ AND $SU(2)_L$ XSU(2)_R SHARE DIM<=3 ORDER PARAMETER(S).

Among quark bi-linears $\langle \bar{q}\Gamma q(x) \rangle$ only $\langle \bar{q}q(x) \rangle$ can have a VEV : No dim.<=3 operator breaks U(1)_A without breaking SU(2)_LxSU(2)_R.

How about higher dim. operators ?

-> our work [Aoki, F, Taniguchi 2012]

$$\begin{aligned} \mathbf{DIRAC SPECTRUM AND} \\ \mathbf{SYMMETRIES} & [Aoki-F-Taniguchi 2012] \\ \langle \bar{q}q \rangle &= \lim_{m \to 0} \int d\lambda \ \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(0) \\ [Banks-Casher 1980] \end{aligned}$$

Our idea = generalization of BC relation

to higher dim operators (dim=6 operators were done by T.Cohen 1996) :

[Aoki-F-Taniguchi 2012]

OUR RESULT 1 : MANY ORDER PARAMETERS ARE SHARED.

(under some "reasonable" assumptions)

Constraint we find

 $\lim_{m \to 0} \langle \rho(\lambda) \rangle = c |\lambda|^{\gamma} (1 + O(\lambda)), \ \gamma > 2$

is strong enough to show

 $\delta_{U(1)_A} \left\langle \frac{1}{V^{N'}} \prod_i^N \left(\int dV \bar{q} \Gamma_i q \right) \right\rangle = 0 \text{ for } \Gamma_i = \tau^a \text{ and } \gamma_5 \tau^a$

for any N (up to 1/V corrections):

these order parameters are shared by $SU(2)_L xSU(2)_R$ and $U(1)_A$.

OUR RESULT 2 : [Aoki-F-Taniguchi 2012] STRONG SUPPRESSION OF TOPOLOGICAL SUSCEPTIBILITY

We also find (in the thermodynamical limit)

$$\left(\frac{\partial}{\partial m}\right)^N \frac{\langle Q^2 \rangle}{V} = 0 \quad \text{for any } N,$$

which implies

$$Q = \frac{1}{32\pi^2} \int d^4 x \epsilon_{\mu\nu\rho\sigma} \text{tr}[F^{\mu\nu}F^{\rho\sigma}]$$
$$\frac{Q^2}{V} = 0 \quad \text{for } m < \exists m_{cr}$$

Suggests 1st order chiral transition ?

(There's no symmetry enhancement at finite quark mass.)

WHAT WE MEAN BY $U(1)_A$ "SYMMETRY"

We call it "symmetry" if

$$\langle \text{any } U(1)_A \text{ breaking} \rangle = \frac{1}{V^{\alpha}}, \quad \alpha > 0$$

Cf. conformal symmetry at the IR fixed point.

CONTENTS

- Is U(1)_A "symmetry" theoretically possible ?
 Our answer = YES. SU(2)_LxSU(2)_R and U(1)_A are connected through Dirac spectrum.
 - 2. Lattice QCD at high T with chiral fermions
 - 3. Result 1: $U(1)_A$ anomaly
 - 4. Result 2: topological susceptibility
 - 5. Summary

JLQCD COLLABORATION Machines at KEK

HITACHI SR16000

Recently

shut down

and U of Tsukuba

Oakforest-PACS

https://github.com/coppolachan/lrolro

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

We simulate 2-flavor lattice QCD.

1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

- We simulate **2-flavor** QCD.
 - 1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

2. different volumes : L=16,32,48 (2 fm-4 fm).

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

- We simulate **2-flavor** QCD.
 - 1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

- 2. different volumes : L=16,32,48 (2 fm-4 fm).
- 3. different lattice spacings : 0.07-0.1 fm.

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

We simulate **2-flavor** QCD.

1. good chirality :

Mobius domain-wall & overlap fermion w/ OV/DW reweighting (frequent topology tunnelings)

2. different volumes : L=16,32,48 (2 fm-4 fm).

3. different lattice spacings : 0.07-0.1 fm.

Other comments

T= 190-330MeV (Tc~180MeV) with Lt=8,10,12.

3-10 different quark masses (w/ reweighting).

long MD time 20000-30000 for reweighting.

OVERLAP VS DOMAIN-WALL

Measure for how

much chiral sym.

Overlap Dirac operator has exact chiral symmetry

$$D_{\rm ov}(m) = \begin{bmatrix} \frac{1+m}{2} + \frac{1-m}{2}\gamma_5 \operatorname{sgn}(H_M) \end{bmatrix} \quad \begin{array}{c} \text{is violated} \\ \swarrow \\ m_{\rm res} = 0. \end{array}$$

(Monius) domain-wall operator is an approximation of overlap.

$$D_{DW}^{4D}(m) = \frac{1+m}{2} + \frac{1-m}{2} \gamma_5 \frac{1-(T(H_M))^{L_s}}{1+(T(H_M))^{L_s}} \quad m_{res} \sim 1 \text{MeV}$$
$$H_M = \gamma_5 \frac{2D_W}{2+D_W}$$
We thought domain-wall fermion was good enough. But...

VIOLATION OF CHIRAL SYMMETRY ENHANCED AT FINITE TEMPERATURE

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

Examine chiral symmetry for each eigen-mode of Mobius domain-wall Dirac operator:

$$g_i = \left(v_i^{\dagger}, \frac{D\gamma_5 + \gamma_5 D - aRD\gamma_5 D}{\lambda_i}v_i\right)$$

 \rightarrow very bad modes appear above Tc (~180MeV).

Domain-wall, $L^3xL_t=32^3x8$, T= 217MeV (β =4.10)

Cf.) residual mass is (weighted) average of them.

For T=0, gi are consistent with residual mass.

U(1)_A ANOMALY IS SENSITIVE TO THE BAD MODES.

Mobius domain-wall fermion is not good enough (at high T) ! GW violation effect is 20%-100%. (10 times of m_{res}) GW violation part in U(1)A susceptibility (definition will be given later.)

[JLQCD (Cossu et al.) 2015, JLQCD(Tomiya et al.) 2016]

OVERLAP/DOMAIN-WALL REWEIGHTING (fermion action can be changed AFTER simulations)

OVERLAP/DOMAIN-WALL REWEIGHTING ALLOWS TOPOLOGY TUNNELINGS

CONTENTS

\sim 1. Is U(1)_A symmetry theoretically possible ?

Our answer = YES. $SU(2)_L xSU(2)_R$ and $U(1)_A$ are connected through Dirac spectrum.

2. Lattice QCD at high T with chiral fermions

 $U(1)_A$ at high T is sensitive to lattice artifact. We need good chiral sym (or careful cont. limit.).

- 3. Result 1: U(1)_A anomaly
- 4. Result 2: topological susceptibility

5. Summary

WHAT WE OBSERVE

Axial U(1) susceptibility

$$\Delta_{\pi-\delta} = \int d^4x \left[\langle \pi^a(x)\pi^a(0) \rangle - \langle \delta^a(x)\delta^a(0) \rangle \right],$$
$$\left(= \int_0^\infty d\lambda \,\rho(\lambda) \frac{2m^2}{(\lambda^2 + m^2)^2} \right)_{2.5 \times 10^8}$$

 β =4.07, =203MeV, *m*=0.001 \vdash β =4.10, *T*=217MeV, *m*=0.001 \vdash We compute β=4.10, T=217MeV, m=0.01 2x10⁸ $-rac{2N_0}{Vm^2}\cdot \hat{V}^{M}_{N}$ s $(\sim 1/\sqrt{V})$ 1.5×10^{8} $\bar{\Delta}_{\pi-\delta}^{\mathrm{ov}} \equiv \Delta$ $\Delta_{\pi-\delta}^{\rm ov}$ 1×10^{8} $5x10^{7}$ N_0 : # of zero modes 0 0.1 0.2 0.3 0

0.4

 $1/L^{3/2}$ (fm^{-3/2})

0.5

0.6

U(1)_A ANOMALY VANISHES IN THE CHIRAL LIMIT

Coarse (a>0.08fm) lattice [JLQCD(Tomiya et al.) 2016]

MESON CORRELATOR ITSELF SHOWS U(1) ANOMALY VANISHING

[C. Rohrhofer et al. 2017]

SU(2)xSU(2) [blue] and U(1)_A (red) partners are degenerate. [similar results reported by Brandt et al. 2016]

Further enhancement to SU(4)? [Glozman 2015]

CONTENTS

\checkmark 1. Is U(1)_A symmetry theoretically possible ?

Our answer = YES. $SU(2)_L xSU(2)_R$ and $U(1)_A$ are connected through Dirac spectrum.

2. Lattice QCD at high T with chiral fermions

 $U(1)_A$ at high T is sensitive to lattice artifact. We need good chiral sym (or careful cont. limit.).

\checkmark 3. Result 1: U(1)_A anomaly

 $U(1)_A$ anomaly at T~1.1-1.4Tc (Tc~180MeV) in the chiral limit is consistent with zero.

4. Result 2: topological susceptibility

5. Summary

TOPOLOGICAL SUSCEPTIBILITY

$$\chi_t = \frac{\langle Q^2 \rangle}{V}$$

$$Q = \frac{1}{32\pi^2} \int d^4x \operatorname{Tr}\epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

another direct probe for $U(1)_A$ anomaly.

TOPOLOGICAL SUSCEPTIBILITY

Above Tc, it is sensitive to lattice artifact. We need (reweighted) overlap fermion for a>0.08fm.

index of overlap Dirac operator is stable against lattice cut-off.

TOPOLOGICAL SUSCEPTIBILITY VANISHES BEFORE THE CHIRAL LIMIT [JLQCD preliminary]

FINITE VOLUME DEPENDENCE

[JLQCD preliminary]

FINITE LATTICE SPACING DEPENDENCE [JLQCD preliminary]

STRONG SUPPRESSION OF TOPOLOGICAL SUSCEPTIBILITY If our data indicates

$$\frac{\langle Q^2 \rangle}{V} = 0 \quad \text{for } m <^{\exists} m_{cr}$$

Chiral phase transition is likely to be 1st order.

(There's no symmetry enhancement at finite quark mass.) If $m_u, m_d < m_{cr}$, there may be gravitational waves from QCD bubble collision in the early universe.

CAN AXION BE A DARK MATTER?

 $\chi_t = 0$

If our result really indicates and 1st order phase transition,

Axion cannot be a dark matter since too much DM created (to expand our universe).

TEMPERATURE DEPENDENCE

Shows a sharp drop!

TEMPERATURE DEPENDENCE

But so does instanton model (1/T⁸).

THE DROP IS STILL IMPRESSIVE.

CONTENTS

\checkmark 1. Is U(1)_A symmetry theoretically possible ?

Our answer = YES. $SU(2)_L xSU(2)_R$ and $U(1)_A$ are connected through Dirac spectrum.

2. Lattice QCD at high T with chiral fermions

 $U(1)_A$ at high T is sensitive to lattice artifact. We need good chiral sym (or careful cont. limit.).

\checkmark 3. Result 1: U(1)_A anomaly

 $U(1)_A$ anomaly at T~1.1-1.4Tc (Tc~180MeV) in the chiral limit is consistent with zero.

4. Result 2: topological susceptibility

Topological susceptibility drops before the chiral limit.

5. Summary

SUMMARY

- 1. $U(1)_A$ anomaly at high T is a non-trivial problem.
- 2. $U(1)_A$ and $SU(2)_L xSU(2)_R$ order prms. connected.
- 3. U(1)_A is sensitive to lattice artifact at high T
 -> We need overlap fermion for a>0.08 fm.

For a=0.07 fm, Mobius domain-wall is O.K.

4. In our simulation with chiral fermions at 3 volumes and 3-10 quark masses at T=1.1-1.8Tc (Tc~180MeV), U(1)_A anomaly disappears [before the chiral limit] (suggesting 1st order transition ?).

MAIN MESSAGE OF THIS TALK

In high T QCD, whether

$$\left\langle \left\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \right\rangle_{fermion} - \left\langle \delta_{A} O(x) \right\rangle_{fermion} \delta(x - x') \right\rangle_{gluons}$$
$$= \left\langle \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \left\langle O(x') \right\rangle_{fermion} \right\rangle_{gluons} = 0???$$

or not is a non-trivial question, which can only be answered by carefully integrating over gluons (by lattice QCD).

BACK UP SLIDES

SUM OF NON-ZERO QUANTITY NONZERO ?

NOT always.

Example: chiral condensate

$$\langle \bar{q}q \rangle = \frac{\int dA \mathrm{Tr} D^{-1} \det D e^{-S_G}}{Z}$$

can be zero and non-zero. How about

$$\left\langle \left\langle \partial_{\mu} J_{5}^{\mu}(x) O(x') \right\rangle_{fermion} - \left\langle \delta_{A} O(x) \right\rangle_{fermion} \delta(x - x') \right\rangle_{gluons}$$
$$= \left\langle \frac{1}{32\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}(x) \left\langle O(x') \right\rangle_{fermion} \right\rangle_{gluons} = 0???$$

SHARP DROP IS NOT DUE TO TOPOLOGY FREEZING

WHY BAD MODES ONLY ABOVE T_c?

Suppose bad modes are always there but sparse.

At T=0, they mix with MANY good lowlying modes, then relative lattice artifact is comparable to residual mass.

At T>Tc, good modes are also **SPARSE**, the lattice artifacts remain large.

PHASE DIAGRAM?

WHY DIFFERENT?

Overlap and non-chiral fermions may be in different phases:

WHEN WE USE DOMAIN-WALL FERMIONS WE MUST

- 1. Check mass dependence at T=0.
- 2. Check mass dependence at T> Tc : if m=0 limit is consistent with zero.

Otherwise, your results could be contaminated by lattice artifacts.

ASSUMPTIONS IN AOKI-FUKAYA-TANIGUCHI 2012

1. SU(2) x SU(2) fully recovered at Tc.

2. if $\mathcal{O}(A)$ is *m*-independent $\langle \mathcal{O}(A) \rangle_m = f(m^2)$ f(x) is analytic at x = 0

3. if $\mathcal{O}(A)$ is *m*-independent and positive, and satisfies finite **4.** $\rho^A(\lambda) \equiv \lim_{V \to \infty} \frac{1}{V} \sum_n \delta\left(\lambda - \sqrt{\bar{\lambda}_n^A \lambda_n^A}\right) = \sum_{n=0}^{\infty} \rho_n^A \frac{\lambda^n}{n!} \text{ at } \lambda = 0 \ (\lambda < \epsilon)$

(4 can be removed.)

OUR OVERLAP DIRAC OPERATOR

$$\begin{split} D_{\rm ov}(m) &= \sum_{|\lambda_i^M| < \lambda_{\rm th}^M} \left[\frac{1+m}{2} + \frac{1-m}{2} \gamma_5 \operatorname{sgn}(\lambda_i^M) \right] |\lambda_i^M \rangle \langle \lambda_i^M \\ &+ D_{\rm DW}^{\rm 4D}(m) \left[1 - \sum_{\lambda_i^M < |\lambda_{\rm th}^M|} |\lambda_i^M \rangle \langle \lambda_i^M | \right], \end{split}$$

 λ_i^M : eigenvalue of H_M .

"EFFICIENCY" OF OV/DW REWEIGHTING

$$\frac{N_{eff}}{N} = \frac{\langle R \rangle}{Nmax(R)}$$

On our 2-4 fm lattices at T=1.1-1.8Tc (Tc~180MeV) a ~ 0.1 fm : O.K. for L=2 fm, $N_{eff}/N \sim 1/20$ but does not work for 4 fm. $N_{eff}/N < 1/1000$. (\rightarrow we approximate it by O(10) low-modes.) a ~ 0.08 fm : works well (3 fm). $N_{eff}/N \sim 1/10$ a ~ 0.07 fm : domain-wall & overlap are consistent (2.4, 3.6 fm). $N_{eff}/N > 1/10$

"EFFICIENCY" OF OV/DW REWEIGHTING

$$\frac{N_{eff}}{N} = \frac{\langle R \rangle}{Nmax(R)}$$

On our 2-4m lattices at T=1.1-1.8Tc (Tc~180MeV), a ~ 0.1 fm : O.K. for L=2 fm : $N_{eff}/N \sim 1/20$ but does not work for 4 fm. $N_{eff}/N < 1/1000$. (\rightarrow we approximate it by O(10) low-modes.) a ~ 0.08 fm : works well (3 fm). $N_{eff}/N \sim 1/10$ a ~ 0.07 fm : domain-wall & overlap are consistent (2.4, 3.6 fm). $N_{eff}/N > 1/10$

Our focus in this talk